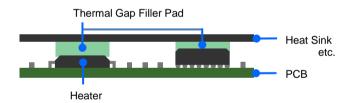


Fujipoly Data Sheet SARCON[®] GR130A series

High Performance Gap Filler Type

FEATURES


Highly Conformable and High Heat Conducting gel materials.

SARCON[®] Thermal Gap Filler Pads are highly conformable and high heat conducting gel materials in a versatile sheet form. They easily fit and adhere to most all shapes and sizes of components, including protrusions and recessed areas.

CONSTRUCTIONS

Series	Characteristics	Constructions		
SARCON [®] GR130A-00	Silicone compound with double sticky surfaces and Thermal Conductivity of GR130A-00 material is 13.0W/m-K by using Hot Disk	Plain Type		

RECOMMENDED APPLICATION

In areas where space between surface is uneven or varies and where surface textures are a concern regarding efficient thermal transfer, the supple consistency of Gap Filler Pad is excellent for filling air gaps and uneven surfaces.

THERMAL RESISTANCE

GR130A-00 Unit : K-cm ² /W (K-in ² /W)							
Compression Force	0.3mmT	0.5mmT	1.0mmT	1.5mmT	2.0mmT		
100kPa /14.5psi	0.3 (0.04)	0.4 (0.06)	0.7 (0.11)	1.0 (0.16)	1.3 (0.20)		
300kPa /43.5psi	0.2 (0.03)	0.3 (0.05)	0.6 (0.09)	0.8 (0.13)	1.0 (0.15)		
500kPa /72.5psi	0.2 (0.03)	0.3 (0.05)	0.5 (0.08)	0.7 (0.11)	0.7 (0.11)		

Test method: Fujipoly Test method, FTM-P3050 by TIM Tester 1300 which is ASTM D5470 equivalent • Specimen Area; DIA.33.0mm (1.30in)

Properties		unit		GR130A-00		Test method	Specimen
Physical	Color	-		Lig	ght Gray	Visual	-
Properties	Specific Gravity	-			3.0	ASTM D792	А
	Hardness	Shore	00		74	ASTM D2240	В
	Highest Value	(ASKEI	R-C)		(53)	JIS K7312	D
Electrical	Volume Resistivity	Ohm	-m	1	.0x10 ¹⁰	ASTM D257	С
Properties	Breakdown Voltage	kV/mm (vo	olts/mil)	1	4 (356)	ASTM D149	С
	Dielectric Strength	kV/mm (vo	olts/mil)	-	7 (178)	ASTM D149	С
Dielectric Constant		50Hz		9.44		А	
	-	1kHz		8.47	ASTM D150		
			1MHz		7.97		
	Dissipation Factor		50Hz		0.157		А
			1kHz		0.045	ASTM D150	
			1MHz		0.010		
Thermal	Thermal Conductivity	W/m	-К 13.0		ISO 22007-2		
Properties	Useful Temperature	°)	-40 to +150 (-40 to +302)		-	-	
	Low molecular Siloxane	wt%	0	D_4 to D_{20} Total	0.0194	Gas Chromatography	-
	Flame Retardant	-	- V-0 equ		equivalent	UL 94	-

TYPICAL PROPERTIES

Specimen A: 2mmT Specimen B: 60mmW x 120mmL x 20mmT · Specimen C: 120mmW × 120mmL × 1mmT

COMPRESSION FORCE

GR130A-00

Compression Ratio	0.3mmT	0.5mmT	1.0mmT	1.5mmT	2.0mmT		
10%	19 (4.3)	224 (50.8)	299 (67.7)	177 (40.1)	150 (31.7)		
20%	370 (83.8)	460 (104.2)	529 (119.9)	387 (87.7)	364 (82.5)		
30%	563 (127.6)	908 (205.7)	1026 (232.5)	807 (182.8)	701 (158.8)		
40%	784 (177.6)	1559 (353.2)	1386 (314.0)	1391 (315.1)	1068 (242.0)		
50%	1330 (301.3)	2030 (459.9)	2095 (474.6)	1949 (441.6)	1406 (318.5)		
Sustain 50%	835 (189.2)	845 (191.4)	350 (79.3)	289 (65.5)	182 (41.2)		

Unit : N/6.4cm² (psi)

Test method: Measured by ASTM D575-91 for reference

Specimen Area; DIA.28.6mm (1.13in) Platen Area; DIA. 28.6mm (1.13in) Sustain 50%: Sustain 50% at 1 minute later

Compression Velocity; 5.0mm/minute

 $150^{\circ}C = 302^{\circ}F$

DURABILITY

Test Property	Unit	70	೨ °C	150°C		
Test Property	Onit	Initial	After 1,000hrs	Initial	After 1,000hrs	
Specific Gravity	-	3.0	3.0	3.0	2.9	
Hardness	Shore OO	74	80	74	94	
Breakdown Voltage	kV/mm	14	16	14	18	
Thermal Resistance*	K∙cm²/W	0.54	0.50	0.58	0.66	
		0000/0		1000/00	405/00	
Test Property	Unit	60°C/90%RH		-40°C/30min⇔125/30min		
	•	Initial	After 1,000hrs	Initial	After 1,000hrs	
Specific Gravity	-	3.0	3.0	3.0	3.0	
Hardness	Shore OO	74	89	74	91	
Breakdown Voltage	kV/mm	14	18	14	17	
Thermal Resistance*	K∙cm²/W	0.6	0.6	0.59	0.57	
		design of the second state to second				
Test Property	Unit	-40°C		<u>re</u>	duced temperature	
loctropoly	•	Initial	After 1,000hrs	$-40^{\circ}C = -40^{\circ}F$		
Specific Gravity	-	3.0	3.0	$60^{\circ}C = 140^{\circ}F$		
Hardness	Shore OO	74	74	70°C = 158°F		
Breakdown Voltage	kV/mm	14	13	125°C = 257°F		

0.53

*Test method : FTM P-3030 (ASTM D 5470 modified)

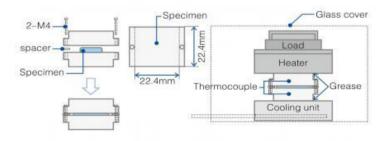
Themal resistance

Sample Size : 15mm x 15mm x 1mmt Spacer : 0.7mmt (Compression ratio 30%)

 $\mathsf{Rt} = (\Delta \mathsf{T} \cdot \mathsf{S}/\mathsf{Q}) \text{-} 0.34$

Thermal Resistance*

Rt : Thermal Resistance (°C · cm²/W)


Q: Apply electricity (W)

 ΔT : Top and bottom metal board difference of temperature T1-T2 ($^\circ C$)

K·cm²/W

S : Sample contact area(cm²)

0.34 : The thermal resistance revision of the aluminum blocks ($^\circ C \cdot cm^2 /W$)

0.57

TYPES AND CONFIGURATION

Series	Product Name	Thickness	Sheet Size	
	GR130A-00-30GY	0.3 mm ± 0.06 mm		
SARCON [®] GR130A-00	GR130A-00-50GY	0.5 mm ± 0.10 mm	300mm × 200mm	
	GR130A-00-100GY	1.0mm ± 0.20mm	(Recommended Usable Size:	
	GR130A-00-150GY	1.5mm ± 0.20mm	290mm×190mm)	
	GR130A-00-200GY	2.0mm ± 0.30mm		

HANDLING NOTES

- It is recommended to use the material in up to 30% of compression ratio. Using the material beyond the recommended compression rate may result in excessive silicone oil exudation.
- It is recommended to compress the material with the equal ratio on the whole surface. Partial excessive stress may also result in excessive silicone oil exudation.

WARRANTY STATEMENT

- Fujipoly has been utilizing Hot Disk method and TIM Tester method since Fujipoly defined them as Fujipoly standard.
- Properties of the products may be revised due to some changes for improving performance.
- Fujipoly Test method FTM-P3030 based on ASTM D5470 and ASTM C177 (GHP) method.
- Properties values in this document are not specification or guaranteed.
- This product is made of silicone, and silicone oil may exude from the product.
- This product is made of silicone, and low molecular siloxane may vaporize depending on operating conditions.
- The product is designed, developed, and manufactured for general industrial use only. Never use for medical, surgical, and/or relating purposes. Never use for the purpose of implantation and/or other purposes by which a part of or whole product remains in human body.
- Before using, a safety must be evaluated and verified by the purchaser.
- Contents described in the document do not guarantee the performances and qualities required for the purchaser's specific purposes. The purchaser is responsible for pre-testing the product under the purchaser's specific conditions and for verifying the expected performances.
- Statements concerning possible or suggested uses made herein may not be relied upon, or be constructed, as a guaranty of no patent infringement.
- Copyright[©] 2019 Fujipoly[®]